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Abstract 
A new compressible fluid flow Physics that takes into account the intrinsic compressibility of the fluid is 
implemented in COMSOL 6.2 using the Coefficient Form PDE in the Mathematics Interface. This Physics 
solves the standard Navier-Stokes equation along with a new continuity equation that relates the time dependent 
pressure inside a control volume to the divergence of the fluid flow in that volume. Results from the new Physics 
are compared with those from the incompressible fluid flow Physics in the standard COMSOL pre-built Laminar 
Flow CFD interface. 
Keywords: Compressible fluid, incompressible fluid, Laminar Flow, speed of sound, Coefficient Form PDE.  
 

Introduction 
COMSOL offers three different fluid flow models 
in its single-phase Laminar Flow Physics interface. 
(1) Incompressible flow (2) Weakly compressible 
flow and (3) Compressible flow with low Mach 
numbers (<0.3). In the case of compressible flow, 
Navier-Stokes equation is solved together with the 
time-dependent continuity equation for density.  
The continuity equation allows only for the time-
dependent density variations caused by external 
factors (e.g. temperature). However, in some 
applications, it is often required to know the 
pressure variations caused by the fluid 
compressibility. In this paper, we propose a 
modified continuity equation for the time-
dependent pressure and solve the same with Navier 
Stokes equation using the coefficient form Partial 
Differential Equations in the Mathematics Interface. 

Theory 
The new continuity equation we propose for the 
pressure variations caused by fluid compressibility 
is as follows: 

ௗ௉

ௗ௧
+ 𝜌𝑐ଶ(∇. 𝒖) = 0  …(1) 

where P, and u are the pressure, density and 
velocity of the fluid, respectively, and c is the 
velocity of sound in the fluid.  Eq. 1 relates the net 
flow of fluid into a control volume to the rate of 
change of pressure within that volume. Note that 
c2 is simply the compressibility of the fluid. In this 
new compressible flow Physics, Eq. 1 is solved 
along with the Navier-Stokes equation given below 
[1].  
 

𝜌
ௗ𝒖

ௗ௧
+ 𝜌(𝒖. ∇)𝒖 = −∇𝑃 + ∇. 𝐾  …(2a) 

𝐾 = 2𝜇𝑆 −
ଶ

ଷ
𝜇(∇. 𝒖)𝐼  …(2b) 

S =
ଵ

ଶ
[∇𝒖 + ∇𝒖் ]          …(2c)  

where K is stress tensor,  is the fluid viscosity, S is 
the strain rate tensor, I is the unit matrix and the 

other symbols are as defined in eq. 1. A custom 
implementation of the solution of eqs.1 and 2 in 
COMSOL is achieved by casting the above two 
equations in the coefficient form Partial Differential 
Equation, as given below [2]. 

𝑒௔

𝑑ଶ𝑈

𝑑𝑡ଶ
+ 𝑑௔

𝑑𝑈

𝑑𝑡
+ ∇. (−𝑐∇𝑈 − 𝛼𝑈 + 𝛾) + 𝛽. ∇𝑈 + 𝑎𝑈 = 𝑓 

. . . (3) 

where U is the dependent variable solution vector, 
and the other symbols in the coefficients of the 
PDE will be identified in terms of the fluid 
properties, shortly. For our fluid flow problem, the 
dependent variable vector has four components, the 
three velocity components, u,v,w  and the pressure, 
P. 

𝑈 = [𝑢 𝑣 𝑤 𝑃]் 
Thus, eq. 3 is a set of four equations, one for each 
component of U. However, it should be noted that 
there are only three independent variables, x, y and 
z.  Furthermore, the dimensions of velocity and 
pressure are different, but the PDE expects the 
dimensions of all the dependent variables to be the 
same. Hence, all the dependent variables are 
normalized by choosing a suitable velocity norm v0. 
The normalized dependent variable vector is given 
by 

𝑈∗ = [𝑢∗  𝑣∗  𝑤∗  𝑃∗]் 
where u*= u/v0, v*= v/v0, w* = w/v0 and P*=P/(v0

2). 
 
The coefficients in the PDE couple each dependent 
variable with every other dependent variable 
(including itself) and hence they are all (4x4) 
matrices. For example, c is a (4x4) matrix, each 
element of which is a (3x3) matrix, 
as given by the following equation fo 𝑐∇𝑈:  
 

𝑐∇𝑈 =

⎣
⎢
⎢
⎢
⎡

𝑐ଵଵ 𝑐ଵଶ  𝑐ଵଷ  𝑐ଵସ

𝑐ଶଵ 𝑐ଶଶ  𝑐ଶଷ  𝑐ଶସ 
𝑐ଷଵ 𝑐ଷଶ  𝑐ଷଷ  𝑐ଷସ 
𝑐ସଵ 𝑐ସଶ  𝑐ସଷ  𝑐ସସ 

 ⎦
⎥
⎥
⎥
⎤

 ൦

∇𝑢
∇𝑣
∇𝑤
∇𝑃

൪       …(4a) 
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𝐶ଵଵ = ൥

𝑐ଵଵଵଵ 𝑐ଵଵଵଶ 𝑐ଵଵଵଷ

𝑐ଵଵଶଵ 𝑐ଵଵଶଶ 𝑐ଵଵଶଷ

𝑐ଵଵଷଵ 𝑐ଵଵଷଶ 𝑐ଵଵଷଷ

൩      …(4b) 

 
and so on. 
Similarly,  and  are (4x4) matrices whose 
elements are (3x1) vectors, ea, da and a are (4x4) 
matrices whose elements are scalars, and f and  are 
simply (4x1) vectors.  
By writing down eq. 3 in component form (see 
Appendix) and expanding the individual terms, it 

can be own that 𝑐௜௝௞௟  is the coefficient of  
డమ௎ೕ

డ௞డ௟
 in 

the component equation for Ui  (i,j ={1,2,3,4} and 
k,l = {x,y,z}). Similarly, ijk is the coefficient of  
డ௎ೕ

డ௞
  in the component equation for Ui . After writing 

down all the terms in eq. 3 explicitly, and 
comparing the corresponding terms in the PDE and 
the Navier Stokes / continuity equations, the 
following values of the coefficients can be 
established in terms of the kinematic viscosity 



𝑐ଵଵ = ൦

4

3
𝜐 0 0

0 𝜐 0
0 0 𝜐

൪ ; 𝑐ଵଶ = ቎
0 − 2𝜐

3ൗ 0

𝜐 0 0
0 0 0

቏ 

 
 

𝑐ଵଷ = ቎
0 0 − 2𝜐

3ൗ

0 0 0
𝜐 0 0

቏ ; 𝑐ଶଵ = ቎

0 𝜐 0

− 2𝜐
3ൗ 0 0

0 0 0

቏ 

 
 

𝑐ଶଶ = ൦

𝜐 0 0

0
4

3
𝜐 0

0 0 𝜐

൪ ;  𝑐ଶଷ = ቎

0 0 0

0 0 − 2𝜐
3ൗ

0 𝜐 0

቏ 

 

𝑐ଷଵ = ቎

0 0 𝜐
0 0 0

− 2𝜐
3ൗ 0 0

቏ ;   𝑐ଷଶ = ቎

0 0 0
0 0 𝜐

0 − 2𝜐
3ൗ 0

቏ 

 

𝑐ଷଷ = ൦

𝜐 0 0
0 𝜐 0

0 0
4

3
𝜐

൪ 

 
All the other c coefficients are zero. 
 
ij coefficients are as follows. 

𝛽ଵଵ = 𝛽ଶଶ = 𝛽ଷଷ = ൥

𝑢∗𝑣଴

𝑣∗𝑣଴

𝑤∗𝑣଴

൩ 

 

𝛽ଵସ = 𝛽ସଵ = ቈ

𝑣଴

0
0

቉ ;   𝛽ଶସ = 𝛽ସଶ = ൥
0
𝑣଴

0
൩ 

 
 

𝛽ଷସ = 𝛽ସଷ = ൥

0
0
𝑣଴

൩ 

 
Finally, da is given by the following diagonal 
matrix. 

𝑑௔ =

⎣
⎢
⎢
⎢
⎡
1 0  0  0
0 1 0 0
0 0 1 0

0 0 0
𝑣଴

ଶ

𝑐଴
ଶ ⎦

⎥
⎥
⎥
⎤

 

 
All the other coefficients in the PDE are zero. 
 
In the case of two-dimensional flow, there are only 
two independent variables (x and y) and 
correspondingly only three dependent variables (u, 
v and P). In this case, c is a (3x3) matrix whose 
elements are 2x2 matrices,  and  are (3x3) 
matrices each element of which is a 2x1 vector, ea, 
da and a are 3x3 matrices while  and f are 3x1 
vectors. The values of these coefficients can be 
easily deduced in a manner similar to the case of 3-
dimensional flow. 

Numerical Implementation in COMSOL  
 
A simple rectangular geometry and a cylindrical 
geometry were chosen, respectively, to test the 
implementation of the new Physics interface in 2D 
and 3D. Fig. 1 is a partial screen shot view of the 
COMSOL model for a 3D cylinder showing the 
equations and some of the coefficients in the 
Coefficient Form PDE.  
 

 
 
Figure 1. A partial screen shot of the COMSOL model 
showing the equations and some coefficients for the 
Coefficient Form PDE implementation of the new 
compressible fluid flow physics. 
 
The following Dirichlet boundary conditions were 
used. At the inlet, a pressure step was applied at 
t=0. The time-dependent response of the fluid was 
studied by monitoring the average fluid velocity at 
the outlet. The Dirichlet boundary condition P=0 
was applied to the outlet. At the walls of the 
cylinder no slip boundary condition was applied by 
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setting all the velocity components to zero. For 
comparison, another study was done on the same 
geometry using the standard COMSOL 
incompressible Laminar Flow Physics Interface.  

Simulation Results  
 
The velocity surface plots for the 2D rectangular 
geometry at an arbitrary intermediate time for both 
the incompressible Laminar Flow Physics model 
and the new Compressible Fluid model are shown 
in Fig.2. For the case of incompressible fluid, a 
constant velocity along the flow direction is seen, 
as expected. On the other hand, the compressible 
flow shows a velocity variation along the flow 
direction. Quantitative 1D plots of the velocity 
along the centerline of the rectangle for the Laminar 
Flow model and the compressible flow model are 
shown in Fig. 3. 

 
Figure 2. Velocity surface plots for the incompressible 
Laminar flow interface and the compressible flow 
interface using Mathematics interface. 
 

 
 
Figure 3. Velocity along the centerline for the 
incompressible and the compressible flow models. Notice 
the (nearly) constant velocity for the incompressible flow 
vs. variable velocity along the flow direction for the 
compressible flow. 
 
 

 
Figure 4.  Pressure along the centerline of the rectangle 
for the incompressible and the compressible flow models. 
Notice the linear distribution of pressure for the 
incompressible flow vs. non-linear pressure distribution 
for the compressible flow. 
 
The pressure along the centerline for the 
incompressible flow and the compressible flow are 
shown in Fig. 4. For the incompressible flow, a 
linear distribution of pressure is seen, as expected. 
On the other hand, for the compressible flow, a 
non-linear distribution is seen. The applied pressure 
step to the inlet and the response of the fluid 
velocity at the outlet are shown in Fig. 5. The 
oscillations of the fluid velocity (due to the fluid 
compressibility) are clearly seen superimposed over 
the gradual exponential rise of the average velocity 
from zero to its final steady sate value.  
 

 
Figure 5. Applied step pressure and velocity response for 
the compressible flow. Notice the oscillations in the 
velocity (due to the fluid compressibility) as the average 
velocity ramps up from zero to its steady state value. 

Velocity slice plot for the compressible flow in a 
3D cylinder is shown in Fig. 6. The expected 
variation of the velocity along the axis of the 
cylinder is clearly seen. Comparison of exit 
velocities in a 3-D cylindrical geometry between 
the incompressible Laminar flow and the 
compressible flow is shown in Figure 7. 



 
 
 

4 
 
 
 

 
 
Figure 6. Velocity slice plot for the compressible 
flow in a 3D cylindrical geometry. 
 
Once again, the compressible flow shows the 
oscillations, which are absent in the incompressible 
flow. Even though the oscillations are small in this 
3D cylindrical geometry, the agreement between 
the two models (other than the oscillations) is 
remarkable, considering that the two results come 
from completely different Physics interfaces. This 
validates the correctness of the implementation of 
the new compressible flow equations using the PDE 
formulation. 

 
Figure 7. Comparison of exit velocities in a 3D cylinder 
for the incompressible Laminar flow and the 
compressible flow. 

Conclusions 
A new compressible flow Physics that takes into 
account the intrinsic fluid compressibility is 
implemented in COMSOL using the Coefficient 
Form PDE in the Mathematics Interface. The 
results from the new Physics are compared with 
those from the incompressible Laminar Flow 
Physics interface available in the Standard 
COMSOL implementation. Excellent agreement 
between the results from the two Physics interfaces 
(Custom compressible flow Physics vs. Standard 
incompressible flow Physics) is demonstrated when 
the compressibility effects are small. 
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Appendix 
In the component form eq. 3 may be written as 
follows: 
𝑒௔௜

ௗమ௎೔

ௗ௧మ
+ 𝑑௔௜

ௗ௎೔

ௗ௧
+

డ

ௗ௞
∑ ∑ ∑ 𝑐௜௝௞௟

ଷ
௟ୀଵ

డమ௎ೕ

డ௞డ௟

ସ
௝ୀଵ

ଷ
௞ୀଵ +

∑ ∑ 𝛽௜௝௞
డ௎ೕ

డ௞

ଷ
௞ୀଵ

ସ
௝ୀଵ + ∑ 𝑎௜௝

ସ
௝ୀଵ 𝑈௝ = 𝑓௜ ,    ௜ୀ{ଵ,ଶ,ଷ,ସ}. …(A1) 

 
In eq. A1, the coefficients  and  are assumed to be zero for 
simplicity, as they are in the present case. (Note: k, l = {1,2,3} 
corresponds to {x, y, z}.) 
Returning to the Navier-Stokes equation, the strain-rate tensor 
(eq. 2C) is given by 

𝑆 = ቎

𝑆௫௫ 𝑆௫௬ 𝑆௫௭

𝑆௫௬ 𝑆௬௬ 𝑆௬௭

𝑆௫௭ 𝑆௬௭ 𝑆௭௭

቏ 

 

𝑆௫௫ = 𝜕𝑢
𝜕𝑥ൗ  ; 𝑆௬௬ = 𝜕𝑣

𝜕𝑦ൗ  ; 𝑆௭௭ = 𝜕𝑤
𝜕𝑧ൗ  ; 

𝑆௫௬ =
1

2
ቀ𝜕𝑢

𝜕𝑦ൗ + 𝜕𝑣
𝜕𝑥ൗ ቁ ; 

𝑆௫௭ =
ଵ

ଶ
ቀ𝜕𝑢

𝜕𝑧ൗ + 𝜕𝑤
𝜕𝑥ൗ ቁ; 

 𝑆௬௭ =
1

2
ቀ𝜕𝑣

𝜕𝑧ൗ + 𝜕𝑤
𝜕𝑦ൗ ቁ ; 

 

Hence ∇. 𝑆 is given by the following vector: 

⎣
⎢
⎢
⎢
⎢
⎢
⎡

𝜕ଶ𝑢

𝜕𝑥ଶ
+

1

2
ቆ

𝜕ଶ𝑢

𝜕𝑦ଶ
+

𝜕ଶ𝑣

𝜕𝑦𝜕𝑥
ቇ +

1

2
ቆ

𝜕ଶ𝑢

𝜕𝑧ଶ
+

𝜕ଶ𝑤

𝜕𝑧𝜕𝑥
ቇ

1

2
ቆ

𝜕ଶ𝑢

𝜕𝑥𝜕𝑦
+

𝜕ଶ𝑣

𝜕𝑥ଶ
ቇ +

𝜕ଶ𝑣

𝜕𝑦ଶ
+

1

2
ቆ

𝜕ଶ𝑣

𝜕𝑧ଶ
+

𝜕ଶ𝑤

𝜕𝑧𝜕𝑦
ቇ

1

2
ቆ

𝜕ଶ𝑢

𝜕𝑥𝜕𝑧
+

𝜕ଶ𝑤

𝜕𝑥ଶ ቇ +
1

2
ቆ

𝜕ଶ𝑣

𝜕𝑦𝜕𝑧
+

𝜕ଶ𝑤

𝜕𝑦ଶ ቇ +
𝜕ଶ𝑤

𝜕𝑧ଶ ⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

 

∇. (∇. 𝒖)𝐼 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

𝜕

𝑑𝑥
൬

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
൰

𝜕

𝑑𝑦
൬

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
൰

𝜕

𝑑𝑧
൬

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
൰

⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

Substituting the above expressions in eq. 2a and 
comparing the corresponding terms in the expanded 
Navier Stokes equation together with the continuity 
equation with the PDE (eq. A1) given above, the 
values of the PDE coefficients can be easily 
derived. 


