Xperts.One [Engineering] 15 July 2025

Knowledge Driven Dynamic Frequency Scaling

Anirban Lahiri, Nagaraju Bussa, Pawan Saraswat

Abstract

This paper proposes a novel, knowledge driven dy-
namic frequency scaling approach for dynamic power man-
agement. It uses a neural network model for learning
the behavior of various applications and then uses this
knowledge for predicting the optimal processor frequency
at any instance of time. The experimental results show
the elegance of the approach. The approach may be
suitably modified for application in multicore processors
and SoCs(System on Chips).

1. Introduction

Software application profiling can be utilized for a va-
riety of purposes like checking the reliability of software,
finding performance limitations, code usage, etc. Data
obtained from such profiling may in turn be used for
predicting the behavior of the concerned software in future.
Common attributes of software like reliability can be easily
predicted from past data with the help of various tech-
niques for example [4]. Dynamic prediction of application
behavior, based on previous profile data, has been used
effectively in the past for performance optimization, aid
thermal management, reducing resource contention etc. It
has also been used for predicting the energy consumption
and battery life for mobile embedded devices [6]. However,
the issue of how such predictions can be used efficiently for
dynamic power / energy optimizations still remains an open
area for research. It may be observed that such predictions
can be obtained at different levels of granularity. Also
the results obtained from these predictions may be utilized
using various techniques for energy optimization, again at
various levels.

A large number of techniques for power / energy op-
timization using Dynamic Voltage / Frequency Scaling
(DVES) can be found in literature [11]. In prior work
researchers have attempted to guess the behavior of appli-
cations [2]. Some of these work attempt to identify the
characteristics of system based on history like [8]. Added
to this is the fact that various applications or application
classes behave in different ways as identified by [2]. The

primary insight this work is that the power / energy manager
could learn the behavior of applications by itself and devise
the DVES policy rather than the designer or architect
dictating them. The current work explores such a learning
based strategy using neural networks. The paper describes
how it is possible to capture the various aspect of program
execution such that the system learns the computational
requirements of individual applications. Neural networks
score over other knowledge based systems as they require
fixed computation time, limited memory space and able to
generalize their knowledge, thus characteristics pertaining
to one application may be extended to a class of applications
similar to it. Furthermore, application behavior is often
dependent to a large extent on user profiles and may be
subjected to change from time to time. For example, the
application of software patches may lead to major changes
in software profile. The neural network model used in this
work may be retrained in such a case to accommodate the
modifications. The retraining can be carried out during
periods of time when the device is not in use, like while
recharging the device batteries.

The approach discussed in this paper has numerous other
advantages over previous ones. The approach renders itself
easily applicable to multi-core processors and complex
SoCs (System-on-Chips). In such scenarios there may be
more than one processor core which support DVFS. It is
essentially a hard problem to determine the optimal operat-
ing frequency of each processor at a particular instance of
time. Any solution to the above problem must necessarily
consider the mutual interdependence between the various
tasks running on the different cores. This alludes to the
fact that the tasks need to be executed in a way such that
the real-time deadlines of any application running on the
system are met. Though the current work does not provide a
comprehensive treatment of the above mentioned scenario,
it has been found that a self stabilizing system as the one
being described performs relatively well in such a scenario.
The mentioned problem would be taken up as a future work.

Another important advantage of the mentioned approach
is its ability to work in a non-intrusive way. That is,
it does not require any additional code to be embedded
in the application unlike many existing techniques [1, 7].
Parameters related to application execution are extracted by

(a)

(b)

(c)

Figure 1: Distribution of the execution times of AAC4 at frequency (a) 250 MHz (b) 162Mhz (c) 133MHz

instrumenting the operating system and hardware abstrac-
tion layers. The method takes advantage of performance
counters present on most modern embedded processors to
log the necessary statistics.

The next section of the paper discusses some prior work.
This is followed by a short analysis on the behavior of
embedded applications and the parameters which closely
reflect it, especially for the current purpose. Subsequent
sections describe how these parameters can be learned,
used for predicting the application requirements and imple-
menting the DVFS scheme. The paper concludes with a
summary of the results and a section on future work.

2. Background

The problem of efficiently changing the processor fre-
quency and voltage for saving energy has been a widely
researched one. The reader may be referred to [11] for
a discussion on the various existing techniques for DVFS
since a detailed description of these methods is beyond
the scope of the current document. However, these work
do not follow a thorough learning based strategy. It may
also be mentioned that the importance of knowledge based
approaches is expected to rise steadily as embedded pro-
cessors encompass more than one processor core and each
capable of working at multiple frequencies and voltages.
This paper addresses the frequency scaling problem since
the platform used for experimentation in the current also
once the frequency is found determining the operating
voltage is trivial. The subsequent sections of the paper
describe how the profile of an application can be learned by
a neural network and be used for predicting the processor
frequency at runtime. Such a learning based system can
learn from a variety of heuristic techniques apart from those
used in this paper. Hence, the work actually provides a

method for improving the performance of previous heuristic
techniques for DVFS by predicting future behavior. The
paper uses an MPEG4 player as the sample application for
the purpose.

3. Learning Application Profiles

The status of an application during runtime can be
determined from a number of parameters related to the
application profile. In case of an applications involving
streaming data, like the MPEG4 player in this case, the
execution time of the tasks and the pattern in which they
repeat have been found to be important.

Patterns in task execution have been found to be mani-
fested by the distribution of the task execution times and the
time periods after which tasks repeat. These time periods
may be referred to as the periodicity of the tasks. The
distribution curves corresponding to the execution times and
the periodicity values vary with change in the processor
frequency and indicate the status of the application to some
extent. A change in the distribution curve refers to either
a change in the shape of the curve or a change in the
statistical parameters (like mean, mode, standard deviation
etc.) related to the distribution or both. Figure 1 shows the
distribution of the execution times of the task ‘AAC4’ which
corresponds to an audio decoder , for different frequencies
of operation. The shape of the distribution curve undergoes
a noticeable change when the CPU frequency is changed.
It may be observed that at lower frequencies the execution
time of some tasks become short. The reason for this is
that these tasks are swapped out frequently by other higher
priority tasks. This underlines another aspect of running
applications at a reduced frequency. The system buffering
used and the context switch interval may also be optimized
at different levels for better performance. However, this is

300

(@)

(©)

Figure 2: Distribution of the periodicities of VRVO at frequency (a) 250 MHz (b) 162Mhz (c) 133MHz

outside the scope of the current work.

The statistical properties of the distribution also change
with change in frequency as mentioned above. This is
illustrated by Figure 2 which shows the distribution of the
task periodicities for the video rendering task ‘VRVO’.
In this case the shape of certain distribution curves may
show only minor changes with change in frequency, but it
shows a distinct shift on the X-axis for different processor
frequencies.

Apart from CPU speed the execution pattern is also
influenced by parameters like number of other applications
running on the system, the relative priority of each task,
resource requirements of each task, etc. Out of these
certain patterns correspond to the “healthy execution” .
This means that no application deadline is missed and
there is no performance degradation when that particular
execution pattern is observed. On the other hand, other
patterns may indicate failure in meeting deadlines and
quality degradation. Theoretically, such patterns could lead
to immediate failure of deadlines, but in the actual case the
system is able to sustain itself for sometime due to buffers.
Hence, it would be possible to tell whether the system
output would be compromised in the near future. Hence,
by learning which patterns indicate healthy execution and
which probably indicate system failure it is possible to
predict the frequency to which the system can be scaled
down without affecting the system performance. The next
section explains how this can be achieved using Neural
Networks.

4. Neural Network Structure and Inputs

The neural network used for learning the application
profile has a fully connected feed-forward structure [3]. The
ability of the neural network to learn different patterns in

IDLE %

Q)
et — (D) §\\\\\\\\
NN
XN N\

BUFFER

TASKID
N < EXECTIME

[PERIODICITY

TASKID
N-M < EXECTIME

[FERIODICITY

Figure 3: Generic structure of the Neural Network

task execution is dependent on the number of hidden nodes
and the type and structure of the inputs provided. It may
be mentioned that the number of hidden nodes required is
proportional to the number of inputs to the neural network
in this case. However, the learning ability of the network
does not change significantly when the number of hidden
layers is increased beyond unity [9]. Hence, for the current
work the number of hidden layers is restricted to one.
This also reduces the computational requirement for the
prediction model.

Figure 3 shows the generic structure of the neural net-
work. The neural network takes as input a sequence of
tasks which have been executed in the recent past. The
Nth task indicates the most recently executed task while
the (IV — 1)th task refers the one before it and so on. A
sequence of (M + 1) tasks are examined at a time by the
neural network, this indicates the size of the observation
window. Each of these tasks is represented by a unique

PCI - Analog
HOST Interface TARGET | - ree | TELEVISION
pY PLATFORM pie

(Nexperia)
Wire
Probes
Serial Keithley
Interface Measurement System

Figure 4: Block diagram of the experimental setup

task identification number referred to as ‘TASK ID’, the
execution time taken by the task and the period of time after
which it has recurred (Periodicity) since its last execution.
The unique task IDs also allow the neural network to
identify whether one or more applications are running
The other inputs to the neural network include the current
operational frequency, the status of important buffers in
the system and the approximate idle percentage. The idle
percentage mentioned is calculated over non-overlapping
windows of fixed size.

The status of critical system buffers play an important
role in determining the future frequency. For example, if
the system buffers are close to being empty then there is
no rationale behind reducing the frequency further even if
the indicated percentage of CPU idle time is considerable.
A more detailed discussion on buffers their significance is
postponed to a later section. The mentioned inputs are
fed to neural network during each task switch and the
neural network in turn predicts the new processor frequency.
Experiments have been carried out with 7 to 20 hidden
nodes corresponding to 6 to 15 inputs for values of M
ranging from O to 3. A greater number of inputs and hidden
nodes allows a better scope for the neural network to learn
patterns in task execution. However, it also increases the
computational load of the neural network model. It has been
found that a value of M=2 suffices in most cases.

5. Training and Functional Operation

The neural network was first trained offline before it was
actually ported on to the target embedded platform. For
the purpose of training the neural network, a couple of
simple heuristic DFS techniques were initially implemented
on the target platform. The profile data that was generated
by various runs of these techniques were logged on a host
PC (Personal Computer) from the target platform using a
PCI interface as shown in Figure 4. This data was then
used to train the neural network offline until stable neural
network weights were obtained. The neural network was
ported on to the target platform with the obtained weights.
The weights are then fine tuned in an iterative manner.

Among the heuristic techniques mentioned above the
first is a idle percentage based DFS approach. This tech-

nique computes the percentage of processor idle time within
fixed size windows thereafter the new frequency is calcu-
lated with the help of the the following expression.

Fy = Fo — (Idle% — Threshold) x Fe (1

where, Fo and Fly denote the current and new frequencies
respectively. Threshold refers to the percentage of idle time
that may be allowed for the CPU since 100% utilization is
not practically feasible. Furthermore, it leaves some scope
for the system to recover in case of a sudden increase in
the computational demand of the system. The threshold
value also determines the amount of power saving, a higher
threshold value usually indicates lower energy savings. The
threshold value is initially put at about 20%. It is iteratively
reduced to fine tune the neural network weights. However,
the idle based approach by itself often leads to poor output
quality including jittery audio and video as it is highly
dependent on the size of the observation window.

The primary insight used in the second approach is that
system performance is not compromised as long as there is
sufficient data in the output interface buffers. If any of these
buffers become empty at some point of time a discontinuity
will be observed in the output. Thus, the previous idle based
approach is combined with a mechanism for monitoring the
buffer conditions periodically. In case the percentage of the
buffer that is empty rises above a certain threshold then the
processor frequency is increased by a factor proportional
to the empty percentage. Though the buffer monitoring
approach leads to significant improvement in the output
quality (no audio or video discontinuities are observed), it
sometimes leads to excessive fluctuations in the frequency
value. This is especially true when the empty percentage
of the buffers are close to the above mentioned threshold.
This leads to behavior similar to “thrashing”. The neural
network is taught to identify a good buffer condition with a
reward, on the other hand a poorly filled buffer (filled below
the threshold) is treated with a punishment.

In either of the above approaches the future values of the
frequency are used to train the network. The obtained neural
network weights are then fine tuned by running the system
on the target platform and logging exceptions (i.e. high
buffer empty or idle percentages) if any. The exceptions are
then used to retrain the neural network. In a practical system
this may be done when the system is not in operation, like
while recharging. Hence, the system battery is not taxed for
the learning process and computational power is not sapped
while the system is in operation.

The functional operation of the system may be explained
with the help of figure 5. The data logged by hardware
counters in the processor are accessed by the run-time
profiler using some specific interface. The relevant statistics
are then extracted from this data and forwarded to the neural
network. The neural network then makes a prediction

Neural
Network

Execution Model
Statistics
Predicted Energy

Run-Time Requirement
Profiler

Power Software

Manager Components
Performance Execution
Data Parameters JL
PC Consolidation Hardware
Platform
7T PC T PC PC
| T/O Interfaces | CPU 1 || CPU2 |ee | CPURN | | Memory |

i g 3 U]

Bus Interconnect

Figure 5: System functional diagram

regarding frequency switching based on the given statistics.
The frequency and voltage modifications are then effected
through an interface to the power manager hardware.

6. Results

The system was coded in C, compiled using NDK
(Nexperia Development Kit) [10] and ported on to target
platform along with the MPEG4 player application such
that they can run parallely. The target platform consisted
of a LCP 1500 board [10] which is connected to a standard
television for displaying the output video stream. The board
is also connected a standard PC for all other communication
purposes as shown previously in figure 4. A Keithley 2700
system [5] was used for estimating the power by measuring
the voltage across a shunt resistance present in series with
the power lead of the processor(see figure 4).

The system was tested using more than 50 MPEG4
video streams having varying profiles (in terms of bit-rate,
resolution, frames per second etc.) and content ranging
from high action (involving rapid scene changes) to drama
and news-reading (having low inter frame differences). The
video streams have been broadly classified into three classes
- drama, high action, moderate drama/action. The neural
network DFS approach yielded a power savings in the
range of 26% to 41% with an average of around 32%
when compared to power consumption of the processor
when running at maximum frequency.The neural network
outperforms the idle based and buffer based approaches
from which it derived its knowledge by 20% and 6% respec-
tively. It may be asserted again that the neural network may
be trained to learn from any previous heuristic approach
and then perform better than the same due to its ability
to predict the future. Figure 6 shows the power savings
obtained in different runs for a small sample set of the
video streams having different parameters, representative of
the different classes (see Table 1) so as to provide a good

Oldle Based W Buffer Monitoring ENN Run 1 ENNRun2 [ONNRun3

9% Savings

1 2 3 4 5 6
Video Clips

Figure 6: Energy savings obtained for different video
streams

\'¥({.e0 Type BitRate | Resolution Frame Rate Audio Sampling
Clip ’ (Kbps) (pixels) | (frames per sec.) Rate (Hz)

Drama 2078 704 X 384 29.97 2400 Stereo
Moderate Action / Drama 1225 352 X 480 23.98 1600 Mono
Moderate Action / Drama 1280 720 X 304 23.98 44100 Stereo
High Action 1543 320X 180 23.98 3200 Stereo
High Action 1278 704 X 384 23.98 44100 Stereo
Moderate Action / Drama 1281 720 X 336 23.98 44100 Stereo

a|u|e|w|o]—

Table 1: Video clip details

comparison. It may be observed that the power savings are
different for various runs of the same video stream since a
predictive approach is involved rather than a deterministic
one and there might be minor variations in task execution
for different runs of the same video stream. It may be
observed from figure 6 that the buffer based approach
sometimes performs worse than the idle based approach due
to “thrashing” (Clip 5) as mentioned before. The energy
savings were achieved only through frequency scaling since
the board did not provide support for voltage scaling.
Combined with voltage scaling the approach is expected
to achieve far greater savings as power consumption is
proportional to the square of the voltage and only linearly
related to the frequency. A major advantage of this neural
network approach is that it is applicable to processors
with on-chip hardware accelerators (like the PNX1500) and
multi-core processors with each core capable of DVFS. In
such cases a deterministic approach is difficult to realize,
hence a predictive approach often proves beneficial.

Figure 7 shows a typical steady state frequency transition
graph of the various mentioned techniques. Observations
windows of the order of 108 and 10%cycles have been used
for the buffer and idle based approaches respectively. A
large window size for the idle based approach obtains an
average value for the CPU utilization but it fails to capture
the dynamic variations in computational load, therefore it
may sometimes prevent tasks from meeting their deadlines.
It may be observed that though the neural network learns
from the idle based and the buffer monitoring approach it
does not inherit the drawbacks of either. These drawbacks

Frequency (MHz) —»

Tune (1/10 seconds) —»

Idle Based Idle Based with buffer
monitoring

Neural Network Based

Figure 7: Frequency transition graph

o
o
=
=

0.042

0.04 }g b g\
0.038
0.036 4 &\A
0.034 e L 5

0032 12—

0.03 T T T T T T T T I T
1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

Time (1/10 seconds)

Voltage Across Shunt (Volts)

—e— At 300MHz —a—Idle Based —=— Buffer based —*—NN based

Figure 8: Processor power profiles

as mentioned previously refers to poor output quality and
rapid, large changes in the processor frequency (often
detrimental to batteries) pertaining to the idle and buffer
based approaches respectively.This indicates that the neural
network is able to learn successfully from the positive and
negative examples provided by other approaches. The
power profile, measured by the voltage across the shunt
resistance, also reflects a similar trend as shown in figure 8

7. Conclusions and Future Work

This paper proposes a novel approach for learning the
behavior application on embedded platforms and subse-
quently use the knowledge for power optimization through
dynamic frequency scaling(DFS). The results have been
found to be encouraging and the approach is suitable for
implementation in multi-core processors and SoCs(Systems
on Chips). The technique may also be implemented in
hardware for faster operation. It is envisioned that such
knowledge based approaches would play a major role in
future embedded processors having multiple cores.

References

[1] A. Azevedo, I. Issenin, R. Cornea, R. Gupta,
N. Dutt, A. Veidenbaum, and A. Nicolau. Profile-
based dynamic voltage scheduling using program

[2

—

[3

—

[4

[}

[5

—

[6

—

[7

—

(8]

checkpoints. In DATE ’'02: Proceedings of the
conference on Design, automation and test in Europe,
page 168, Washington, DC, USA, 2002. IEEE
Computer Society.

Krisztian Flautner, Steve Reinhardt, and Trevor
Mudge. Automatic performance setting for dynamic
voltage scaling. In MobiCom °01: Proceedings of
the 7th annual international conference on Mobile
computing and networking, pages 260-271, New
York, NY, USA, 2001. ACM Press.

Simon Haykin. Neural Networks: A Comprehensive
Foundation. Prentice Hall PTR, Upper Saddle River,
NJ, USA, 1998.

Nachimuthu Karunanithi, Darrell Whitley, and Yash-
want K. Malaiya. Prediction of software reliability
using connectionist models. IEEE Trans. Softw. Eng.,
18(7):563-574, 1992.

Keithley. http://keithley.com/products/dmm/?mn=2700.

Chandra Krintz, Ya Wen, and Rich Wolksi.
Application-level prediction of battery dissipation. In
ISLPED °04: Proceedings of the 2004 international
symposium on Low power electronics, pages 224-229,
2004.

Grigorios Magklis, Michael L. Scott, Greg Semeraro,
David H. Albonesi, and Steven Dropsho. Profile-
based dynamic voltage and frequency scaling for a
multiple clock domain microprocessor. In ISCA
'03: Proceedings of the 30th annual international
symposium on Computer architecture, pages 14-27,
New York, NY, USA, 2003. ACM Press.

Ali Manzak and Chaitali Chakrabarti. Variable voltage
task scheduling algorithms for minimizing energy. In
ISLPED °01: Proceedings of the 2001 international
symposium on Low power electronics and design,
pages 279-282, New York, NY, USA, 2001. ACM
Press.

Thomas M. Mitchell. Machine Learning. McGraw-
Hill Higher Education, 1997.

Momentum Data Systems. http://www.mds.com.

Vasanth Venkatachalam and Michael Franz. Power
reduction techniques for microprocessor systems.
ACM Comput. Surv., 37(3):195-237, 2005.

