Xperts.One [Computer Science] 9 January 2026

A Battery Aware Code-partitioning and Scheduling
Scheme for Realtime Embedded Systems

Anirban Lahiri, Anupam Basu, Monojit Choudhury, Srobona Mitra, Bhargab B. Bhauttauchau"yauT

Abstract— The work in this paper is motivated by the growing
importance of battery life in mobile embedded systems. It
attempts to enhance the battery life of such devices with the
help of a novel battery aware code-partitioning and scheduling
scheme. The techniques introduced in this paper take into
account recent findings, about battery characteristics, in order
to further improve battery lifetimes. Results indicate the efficacy
of the scheme in improving system battery lifetimes, while at
the same time ensuring that applications meet their realtime
performance objectives.

Index Terms— embedded system design, battery optimization,
scheduling, code-partitioning

I. INTRODUCTION

OBILE embedded devices have gained wide popular-

ity over the last few decades. The functionality and
performance expectations of such devices have also increased
manifold over time. In order to meet this growing demand
for high performance, mobile handheld devices need to pack
in a greater number of system components. Further coupled
with this is the requirement for small size and low power
consumption.Thus posing a difficult challenge for embedded
system designers.

Advances in VLSI technology, has been able to address
some of these design issues through the SoC(System-on-Chip)
design paradigm. In the SoC design paradigm, a number of
components or [P(intellectual property) cores are fabricated
on a single silicon die or chip. Such components may include
programmable general purpose processors, ASIPs (Applica-
tion Specific Instruction-set Processors)- like DSP processors
and even RF-communication cores. This allows several co-
processors, ADCs /DACs, memory cores etc. to be packaged
along with the processor, thus reducing the communication
delay between each of the components on the chip and
resulting in a significant performance enhancement. SoCs also
allow parallel execution of a number of tasks on different
resources present on the chip, leading to a substantial speed-up
in the applications executed on the chip.

As SoCs include more and more functional components,
their power consumptions also increase correspondingly. A
major portion of this power consumption may be attributed
to active switching of digital circuits on the processor. This
is often referred to as the dynamic power dissipation of the
processor. However, a large on-chip power dissipation leads to
a number of adverse effects like reduced system reliability and

i Bhargab B. Bhattacharya is with the Indian Statistical Institute, Kolkata,
India

The remaining authors are with the Department of Computer Science and
Engineering, Indian Institute of Technology Kharagpur, India.

excessive cooling requirements. This is sometimes manifested
in the form of packaging costs for the chip. Diverse approaches
have been proposed in literature to address the issue of power
reduction like [4], [33]. Scheduling has been found to be an
effective tool in attaining low-power operation in embedded
systems and its importance has has increased manifold in the
SoC era. Numerous approaches for lowering peak power con-
sumption through scheduling approaches have been proposed
in literature, for instance [1], [36]. However, it may be noted
that power aware real-time scheduling algorithms must ensure
that all timing constraints specified on the system are always
met.

In recent times, mobile devices typically rely on batteries for
their operation and their usefulness is limited by their battery
life. This has brought into the forefront a new design metric for
portable embedded devices - battery life. It may be emphasized
that low-power operation alone does not guarantee maximum
battery life. Battery life depends to a great extent on a
number of important properties or characteristics exhibited by
batteries. Work in this area has revealed many interesting facts
and phenomena about such characteristics and how they affect
battery operation. Therefore it is of great import that these
characteristics and phenomena be incorporated into the design
flow for battery powered mobile embedded systems, in order to
order maximize battery life.The various battery characteristics
and how they can be suitably exploited using battery aware
scheduling and code-partitioning has been shown in this paper.

The work described in this paper has been primarily mo-
tivated by real life design on the TI Innovator development
platform. The TI Innovator board used for the purpose of
this work is based on the OMAP 1510 processor which
incorporates both a general purpose processor as well as a
DSP core within the same package. This allows for par-
allel execution of code on more than one processor core.
Furthermore special purpose cores also help in achieving
significant speed-up for certain classes of applications. As
more and more computation intensive applications are being
ported to mobile embedded systems such architectures with
multiple cores on a single embedded processor are becoming
common. Examples of such processors include OMAP from
Texas Instuments [15], Nomadik from ST Microelectonics [25]
and Nexperia processors from Philips [29]. However, running
multiple core parallely puts additional burden on the system
battery and thus, battery life may be compromised. The work
in this paper redeems such a scenario and addresses the
issue of ensuring realtime performance of the system without
reducing the battery lifetime. The mentioned work is highly
relevant to the current embedded system design flows, since

the trends showing the rise in system power consumption and
the growth in battery capacitiy reveal a fast widening gap
between the two [18].

The techniques proposed in the paper attempts to extend
battery life of portable embedded systems with the help
of proper code-partitioning and scheduling.The paper first
provides a brief overview of previous work in this area and
a few elementary facts about batteries,which would help the
reader appreciate the elegance of the solutions presented. It
then describes a novel recovery based scheduling scheme
that takes into consideration battery characteristics that have
been brought into light as a result of recent work in the
area of battery modeling [31]. This is followed by a battery
aware code-partitioning technique which, in conjunction with
the above scheduling technique allows for further extension
of battery life. The paper presents results obtained both for
random test benches as well as practical design cases. The
paper concludes by a brief explanation of the obtained results
followed by a summary of the contributions.

II. RELATED WORK

Several power aware scheduling techniques for realtime
systems are available in literature. Liu et. al. proposed a
scheduling technique that satisfies min/max timing constraints
of tasks while trying to maintain the power consumption
of the system within a certain predetermined level [21]. A
greedy, slack stealing, power aware scheduling algorithm for
AND/OR graphs, that also considers dynamic voltage scaling
(DVS) has been developed by Zhu et. al. [36]. Alvarez et.
al. proposed a technique for simplifying the variable voltage
scheduling problem, which may be formulated as a multiple-
choice knapsack problem (MCKP), and then solve it using a
heuristic algorithm [1]. Shin et. al. developed an algorithm for
power conscious scheduling which takes into account that all
tasks in a hard real-time system that do not take their worst
case execution time (WCET) and this can be exploited to
obtain power savings [32]. Luo et. al. developed a power
aware joint scheduling scheme for periodic and aperiodic
tasks in a real-time system [23]. However, the major objective
of these scheduling techniques is to reduce the peak power
consumption of the system. The power discharge profile and
battery characteristics have not been taken into consideration
in these scheduling strategies.

Some of the above mentioned works have been extended to
successfully to achieve efficient battery aware scheduling [22].
However, new aspects of battery recovery have been suggested
by recent work [31]. The current scheduling technique incor-
porates them in order to further enhance the system battery
life. Strong heuristics have been used to put definitive bounds
on an otherwise intractable problem [12].

Code-partitioning forms the other important aspect of the
problem of enhancing battery life on mobile embedded sys-
tems. It may be mentioned that code-partitioning in tandem
with suitable scheduling can produce significantly greater
extension to battery life than a battery aware scheduling
scheme [17] alone. Also, previous work has shown the ad-
vantages of functional partitioning of embedded systems for

) f- Terminals -1)

Cell
Voltage

Electrodes

Positive
Electrode

Negative
Electrode

Fig. 1. Structure of an electrochemical cell

achieving both higher performances as well as reducing the
system power consumption [10], [34]. However, none of these
consider the effect of functional partitioning on the battery life
of the system which, as mentioned previously, is becoming
increasingly important. This paper proposes a battery aware
functional partitioning approach which is then used along
with the mentioned battery aware scheduling technique, in
an iterative way, to arrive at an optimal design. The code-
partitioning technique along with the battery aware scheduling
shows a new design scheme, for mobile embedded systems,
that considers the system battery lifetime as an important
design metric.

III. BATTERY FUNDAMENTALS

A battery is necessarily an electrochemical energy storage
system and is composed of one or more electrochemical cells.
In each cell a positive and a negative electrode is immersed
in an electrolyte as shown in figure 1 . Energy is released is
due to a set of electrochemical reactions taking place at each
of the two electrodes in the cell.

Compounds with higher energy content are converted into
those with lower energy content as a result of these elec-
trochemical reactions leading to charge deposition at the
electrodes, thus enabling them to drive a current in an external
circuit. A part of the energy is also lost in the process as
Joule heating. The electrochemical reactions along with other
physical specifications determine the characteristics of the
battery which are represented by several parameters. These
will be explained in the following subsection.

A. Battery Parameters

Each battery can be characterized by a number of
parameters. These parameters indicate the charging and
discharging characteristics of the battery and also its charge
storing ability. Hence, such parameters are directly related to
the operational life of the battery and need to be considered

carefully while selecting a battery for a particular application
or device. Summarized below are some of the more important
parameters [3], [16], [20]. These include:

(a) Battery Voltage

o Open Circuit Voltage (OCV) - Voo
It is the voltage observed across the terminals of the bat-
tery when no current is being drawn from it. Commonly,
the initial open circuit voltages are specified, which is
the voltage observed across the battery terminals when
the battery is fully charged.

o Cut-off Voltage - V,yy
If the voltage of the battery falls below the cut-off voltage
then the battery is assumed to be fully discharged and
hence rendered unsuitable for further operation. It is also
known as the end-of-discharge (EOD) voltage.

(b)Battery Capacity
o Theoretical Capacity
The theoretical capacity is the maximum possible amount
of charge that can be stored in the battery. Hence it is
implied that maximum charge that can be extracted from
the battery is equal to the theoretical capacity. However,
for all practical cases the amount of charge that the
battery delivers is much less than the theoretical capacity.
o Standard or Nominal Capacity
The amount of charge delivered by a battery, when dis-
charged by a constant current, under standard discharge
conditions is referred to as the standard or nominal
capacity. The standard capacity of the battery is measured
in Ah(Ampere-hours) as a convention. Parameters that
much be specified while mentioning the standard capacity
include
— Discharge current
— cut-off voltage
— temperature
Eg. 800mAh at a constant current of 100mAh at 27°C
e Actual or Available Capacity
The actual capacity is the amount of charge delivered by
the battery for a particular discharge profile.

B. Battery Effects

Almost all mobile embedded devices today, are powered
by rechargeable batteries. Rechargeable batteries belong to
various types Eg. Nickel Cadmium, Nickel Metal-Hydride,
Lithium Ion, Reusable Alkaline, Lithium Polymer. However,
all these batteries exhibit some common properties. These
include:

(a) Rate Capacity Effect The rate capacity effect indicates that
if the battery is discharged at a higher rate then a lower actual
capacity is obtained. This may be illustrated with the help of
an example below.

Example 1 : Consider a battery which when subjected to
a constant discharge current of 100mA runs for one hour.
Hence the available capacity of the the battery for above
discharge profile is 100mAh. Now if the same battery is

subjected to a constant discharge current of 200mA then it
lasts for only 22 minutes instead of the expected 30 minute
discharge period. Hence it yields an available capacity of
73.33mAh instead of the 100mAh obtained in case of the first
discharge profile. This can be attributed to the rate capacity
effect exhibited by the battery.

The chemical process corresponding to the rate capacity
effect may be described as follows. Under normal conditions,
or at low discharge rates, all reaction sites on the electrodes
are equally active. On the other hand at high discharge rates,
most of the reaction takes place on the outermost surface
of the electrodes. These reactions are often followed by
the formation of insoluble or sparingly soluble compounds.
Thus slightly remote reaction sites on the electrodes are
permanently cut-off from any further reaction. This leads to
a decrease in the overall battery capacity [9].

(b)Recovery Effect During the process of discharging if the
battery is allowed certain periods of rest (i.e. zero or negligible
discharge current) then it tries to recover a part of its original
voltage. This in turn produces an enhanced available capacity
for the battery. In other words the battery has an improved
performance if its discharge is spaced out by intermittent idle
periods.

The phenomenon can be explained with the help of chem-
istry as follows. Initially the concentration of the active ions
in the electrolyte is uniform throughout the cell. Now, when
the discharge process takes place at a continuous rate, then
the active active ions nearer to the electrodes are depleted at
a rate much faster than the rate at which they are replaced
by other active ions farther away from the electrodes, through
the process of diffusion. Again, if the cell is allowed an idle
period then remaining active ions in the cell will reposition
themselves to reach uniform distribution within the cell [11].
This often leads to a significantly longer battery life.

C. Battery models

Battery models try to emulate the behavior of practical
batteries by taking into consideration the above mentioned
battery effects and properties. Such battery models can be used
to accurately estimate the battery life under specific load con-
ditions. A large number of battery models have been proposed
in literature [2], [9], [11], [13], [14], [24], [27], [28], [30],
[31]. These can again be classified into analytical, stochastic,
electrochemical, electric circuit models as suggested by [19].
Hybrid models, spanning more than one of the above types,
may be considered as a separate class. The mentioned models
are able capture the battery properties and effects to different
extents. For the purpose of the current work, a simulation
framework has been developed. This framework uses a mod-
ified Kinetic Battery Model [31] in order to perform battery
life estimation in a cycle accurate manner. Hence it useful
for evaluating various schedules obtained from the battery-
aware scheduler. The major advantage of the mentioned battery
model is that it is able to capture the aspects of recovery effect
not considered in previous models. These effects have been

Power " ‘r
PR IR IR TR IR, |
l 2 2 I
g 1 2 iz B
(a) Time
Pow:
ower | tP |
| |
1 1
: 2 [2]
1 J2] 3 |

Time

Fig. 2. Power aware Gantt chart showing (a) feasible (b) battery optimized
schedules

utilized in the code-partitioning and recovery based scheduling
techniques described in this work.

IV. BATTERY AWARE SCHEDULING

As previously mentioned, a higher rate of discharge and
variance in the discharge current reduces the available or actual
capacity of the battery. It has also been noted that a pulsed
discharge current can produce a longer battery life than a
constant discharge current due to recovery effect [5S]. These
advantages of a pulsed discharge current also hold when it is
superimposed on a constant current [5]. Further investigations
suggest that the battery performance and hence the battery life
improves with the increase in the time-period of the pulsed
discharge current [31]. The effect of the above mentioned
property and its relevance to battery aware task scheduling
may be illustrated using an example as given below.
Example 2: Considering a set of 3 periodic tasks with a
hyper-period (relative deadline) ¢,. A feasible schedule and
its corresponding battery aware schedule, which takes into
account the above mentioned effects, for the tasks may be
shown in the form of power aware Gantt charts [21] as in
figure 2.

From figure 2 it may be noted that the peak power and the
variance of the discharge current remains the same in both
cases. However, in the second case task no. 2 has been shifted
in time to obtain a battery aware schedule taking recovery
effect into consideration. It has been found through simulation,
using a modified Kinetic battery model [31], that the battery
life in the second case can be greater than that of the first case
by up to 3%. This leads to the notion of power glitches. A
glitch in this case is a sudden transition in the power discharge
level. Such power glitches have been shown by thick striped
lines in 2(a). It has been experimentally observed that the
battery life may be extended by removing or reducing such
power glitches from the discharge profile. This observation
also holds true in example 2 where an improvement of up
to 3% is observed in the battery lifetime by the removal of
just a single pair of power glitches. The scheduling algorithm
described in this section reduces these power glitches in an
elegant manner in order to extend battery lifetimes.

Task graph

.

List Scheduling

Feasible schedule

L _ﬁ&:?)‘?e;y_b_age_dvstaﬁc scheduling !

GTD

(Global Task Distribution)

l

|

|

|

|

|

|

|

|

|

L3O I
(Local Schedule Optimization) |
|

|

|

|

|

|

|

|

|

.

GR

(Glitch Removal)

Battery optimized

Battery Life Estimation
(Modified Einetic Battery Model)

Fig. 3. Block diagram of the scheduler

A. Recovery Driven Scheduling

Real-time embedded systems typically rely on static sched-
ulers for their operation. A discussion on the relative mer-
its and demerits of such schedulers are beyond the scope
of the current work. In this section a novel battery-aware,
real-time static scheduling approach has been proposed. The
scheduling technique takes into consideration hard deadlines
corresponding to individual tasks as well as deadlines for
the entire system as a whole. It also considers the relative
interdependencies between tasks. Therefore, the scheduling
approach is applicable to a large class of scheduling problems
for embedded systems. Obtained results prove the efficacy of
the scheduling technique as it achieves up to 29.41% further
increase in battery lifetime over previous such scheduling
approaches [22] and a total battery life extension of up to
37.7%.

The overall structure of the scheduler may be shown as in
figure 3. The different components of the scheduling scheme
have been discussed in detail in the subsequent paragraphs.
The cost function used for the scheduling process has also been
explained later in this section. The working of the scheduler
and tasks performed by the scheduler in each step has been
illustrated with the help of examples.

An input to the scheduler is in the form of a conditional
task graph with hard deadlines. Each task is represented
by a node in the task graph, while the edges in the task
graph correspond to inter-task dependencies. It is assumed
that task graph contains two special vertices - a source and
a sink vertex as shown in example 3 below. If either of these
vertices does not exist in the task graph then such vertices
may be added to the task graph and a dummy tasks may be
created corresponding to them. Each task is assumed to have
a worst case execution time, a worst case power consumption,

=k3 (1, 0.30)
|

/!
(1,030

I
7 (1,036)

Fig. 4. Task graph for example 3

resource requirements, and deadlines if any. For the purpose
of scheduling time is considered to be divided into slots of
equal length referred to as “units”.

Example 3 : Consider an embedded system specification
given in the form of a task graph as shown in 4. Assume that
the tasks have to be scheduled on 3 different processor cores
or resources. The maximum execution time and maximum
power requirement, in Watts, of each task is indicated
respectively within a pair of parentheses alongside each
task. The task graph shown has a hyperperiod of 10units.
The hyper-period is considered as a hard deadline for all tasks.

A standard list scheduler [7] is used to obtain an initial
feasible schedule for the task graph. It may be noted that as a
result of list scheduling a relative ordering is obtained between
all tasks scheduled on a processor. This can be represented
using an augmented task graph as shown in figure 4. The new
interdependencies arising due to list scheduling process has
been shown using dotted lines in the task graph. Furthermore,
a simple topological search on the augmented task graph yields
the earliest and latest possible execution times of all tasks.
The initial feasible schedule is then subjected to a number of
distinct phases in order to obtain a battery aware schedule.
The order of the phases have been shown in figure 3. The
schedule finally obtained is evaluated using the cycle accurate
battery life estimation framework, as mentioned previously.
The different phases of the scheduling algorithm has explained
in the following subsections.

B. Global Task Distribution (GTD)

In this phase tasks which are scheduled on a single processor
are spaced out in time. This helps in two ways. First, the total
energy consumption of the system is distributed over the entire
hyper-period of the task graph. This ensures that the formation
of high power consumption regions in the discharge profile is
minimized. The second important advantage is that it paves the
path for improving the discharge profile through local schedule
transformations, which is carried out in the next phase.

The GTD phase works in an iterative manner, where tasks

assigned to the same processor, by the list scheduler, are
are scheduled in a single iteration.The process starts with
the core having the highest utilization and proceeds in the
decreasing order of the core/processor utilizations. An average
spacing out time T4,gs5pc 1S calculated at the beginning of
an iteration corresponding to a particular processor. T'4ygSpe
refers to the time interval that is inserted between any two
tasks on that processor and thus depends on the amount of
idle time available on that processor/core. However, it may
not always be possible to insert an idle period exactly equal
t0 T'avgspe between any two tasks due to realtime constraints.
Such realtime constraints are indicated by the earliest and
latest possible start times of each task, which must be obeyed
at all times during the scheduling process. In such cases
T'Avgspe must be recomputed after the task is scheduled in
order to reflect the remaining available idle time corresponding
to the processor. If at any time, T'4,45pc assumes a fractional
value then each time it is used, a random decision is made
either to use a floor or a ceiling function to round it off to an
integral number of time slots, provided the earliest and latest
execution times are not violated for the immediately following
task. It may be emphasized that the GTD phase allows for
greater power savings than a threshold based scheme [22] for
distributing tasks. Also, no human intervention is required for
fixing such thresholds. The working of the GTD phase has
been illustrated through example 4.
Example 4 : Considering the embedded system specified in
example 3 as the input to the scheduling algorithm. The power
aware Gantt charts representing the schedule after the first
phase has been shown in figure 5.

C. Local Schedule Optimization (LSO)

The primary objective of this phase is to improve the
discharge profile by lowering the local maxima for different
regions and eliminating glitches across the entire power dis-
charge profile. This is achieved by through a process of local
schedule optimization using an iterative task shifting scheme.
The schedule obtained at the end of this phase minimizes the
battery losses as a result of rate-capacity effect and improve
the benefits from recovery effect shown by the battery.

An empirical cost function has been developed for the
purpose of estimating the effect schedule transformations on
the battery life. In order to use the cost function the entire
power discharge profile may be considered as a dynamic set
of rectangles {R1, R2,..., Rn}, where the area bounded by each
rectangle represents the corresponding energy consumption as
shown in 5. The reasoning behind choosing an empirical cost

[::J Brocessor 2 7]
12—
T 14 3 4 Processor 1 9
o e e e e s s
=
& ol Frocessor 1
% 04 1
(=3
&
024 5 6
0
1 2 3 4 5 1 £] a 10
Time —»
1.2 4
RI | RZ { RE { R4 | RS | R R7 RS R9 RI0
1 i i \
L0 [P B S
=2 : :
EE : :
: : 4 8
r:ﬁ 04 :[[3 9
" ‘ # 5 6
0
1 2 3 4 g 1 it & a 10
Time ——»
Fig. 5. Power-aware Gantt chart showing schedule after GTD phase

function instead computing the actual energy drawn from the
battery, during the scheduling process is as follows.

First, the exact power drawn from the battery need not
be calculated at each step during the scheduling process
in order to arrive at a battery aware schedule. Second, the
computational cost required for calculating the exact power
drawn from the battery at each step can be avoided. A further
advantage of such a cost function is that it can be computed
only for a portion of the discharge profile under consideration
instead of the entire profile.

The use of the cost function has been explained in detail in
the following paragraph.

F, :aZ(HHi)?L,- +(1 —a)ZAH,» (1)
i=1 i=1
Where,
a = coefficient of recovery [0, 1]
H,; = height of the rectangle R;
L; = length of the rectangle R;
AH1 = ma:ﬂ(Hl - Hl',h()) + max(Hl - Hi+1,0)
AH; may be referred to as the power glitch for rectangle R;.

The cost function is the sum of two terms, which represent
rate capacity effect and recovery effect respectively. The factor
« is used to adjust the relative weights attached to each of
the two effects and has been referred to as the coefficient
of recovery. The value of « is determined by the parameters
of the battery used. For all practical purposes « assumes
values between 0.5 and 1. As previously mentioned, the battery
consumption is super-linear in terms of the discharge current
or power drawn, due to rate capacity effect [28]. This fact
can also be confirmed from Peukerts formula [20]. In order
to capture this property H,; must raised to a power greater
than unity. Thus to reduce the associated computational load
the cost function has been made quadratic in terms of H,.
Simulations have proved that the cost function achieves its

LsSO()
I
L
Lock{t) = FALSE ¥ 1 £ tasks
P = {set of rectangles constituting the power profile}
repeat
d
#r:r= Pand 3 1 € r and Lock(t) = F4LSE)
3 imeiT: T £ Rand Lock(t) = FALSE }:
result = Shift_ Task(R. T):
if(result = NULL)
Lock(T) = TRUE;
Else
Compute_Power_Profile(P);
tuntil(Lock(t) = TRUE, ¥ 1 £ tasks)

N
i

Shift task(R. T)
r
L
R’ = ming.sancary, 0y {1 : T £P. height(r) + height(T) = height(R)}
AF = Contemplate_Move(R, T. R")
If (AF = 0)
Lock(T) = TRUE;
Else 1f (AF = 0)
I

L

Make_Contemplated Move(R. T. R')
Release_All Locks():

Fig. 6. Pseudocode for the LSO phase

intended goal of reflecting the battery life. The cost function
is used extensively both in the current phase as well as the
next phase of the scheduling algorithm in order to evaluate
the result of various local schedule transformations.

The working of this phase can be summarized as follows.
The algorithm at each step determines the rectangle with the
highest height. It then tries to lower this height by local
shifting of tasks. It also keeps track of whether the value of the
cost function is reduced as a result of these transformations.
This enables the algorithm to consider both rate capacity and
recovery effect simultaneously. The cost function as specified
previously takes into consideration new aspects of recovery
effect. This allows for further extension of battery life. The
algorithm for LSO phase may be represented in pseudo-code
as given in figure 6.

The function Comtemplate_Move found in the
pseudocode given in figure 6 above determines the amount
by which the selected task can to be moved into the newly
selected rectangle so as not violate any of its constraints and
calculates the corresponding reduction in the cost function
(denoted by AF'). It may be mentioned that the cost function
is recomputed only for the portion of the schedule that has
been altered. This significantly increases the efficiency of the
algorithm. If an improvement in the schedule is detected as
a result of this contemplated task movement then the task
is actually shifted using the Make_Contemplated_Move
function.

Example 5 : The schedule obtained, in example 4, after the
first phase of the algorithm is taken as input to the second

Remove_Glitch()
{
H = Compute_Glitch(¥r: re P)
R =maxg{r: reP A Lock(R) = FALSE}
R’ = mingmuceqry {1 ra > 0}
T =first { : 1eR A t&precedes(R) A t#succede(R) A Lock(t) = FALSE }
If (T=NULL)
Lock(R)
If (tz > tr)
AF = ComtemplateMove(R.T.succede(R))
else
AF = ComtemplateMove(R, T precede(R"))

If (AF = 0)

{
Make_Contemplated Move(R.T.R")
Release_All Locks():

else

Lock(T)
If (Lock(t) = TRUE.¥1€R)
Lock(R)

Fig. 7. Pseudocode for the GR phase

phase. The schedule obtained at the end of the LSO phase is
shown in figure 8(a).

D. Glitch Removal (GR)

A glitch in this case, as mentioned before, refers to an
abrupt change in the power drawn by the system from the
battery. It has been found through experiments that such
glitches are deterimental to the battery life. The objective of
this phase of the algorithm is to reduce the total amount of
glitching the system undergoes during each hyperperiod. The
procedure followed during this phase is shown in figure 7 in
the form of pseudocode.

Example 6 : The schedule obtained from the previous phase
of the scheduler, as shown in example 5 is taken as input to
the third phase. It may be observed from figure 8(a) that
the tasks 9, 1 and 3 produce significant power glitch, shown
by thickened lines. However since task 1 cannot be shifted,
tasks 3 and 9 are shifted to reduce the glitch as shown in
figure 8(b). This is the battery aware scheduled that is finally
obtained.

V. BATTERY AWARE CODE-PARTITIONING

As mentioned before the use of multi-core processors in
the embedded systems domain is increasing rapidly. This
owes itself to the fact that, application specific cores on
the processor contributes in achieving significant performance
enhancements. DSP oriented applications like speech process-
ing including speech synthesis and recognition, image/video
decoding or enhancement, object recognition and tracking,
implementation of security protocols, graphics rendering are
some of the classes of applications that benefit immensely
from such hardware acceleration. It may be emphasized that
often the power consumption of such hardware accelerators
exceed that of the on-chip general purpose processor by up to a

wai RI iRz {Ra |Re | RS [R6 | RT | B8 | mo
5 05 w | :
50.4. 1 Tl 4 | 2 5
032 2 5 4 6i
0

Time ——»

|
~ 08
&
\: 06 1
L 4 8
E
,ﬁ 04 1 3 9

02 2 5 4 6 =

a T

1 2 3 4 5 B T & E 10
Time —»
)
Fig. 8. Schedule (a)after the LSO phase (b)after the GR phase

few orders in magnitude. In such cases code-partitioning along
with scheduling can help achieve performance gains without
affecting the battery life. System power reduction with the help
of functional partitioning has been studied previously [10],
[34]. However, the effect of functional partitioning on battery
life has not been considered by them. The current work ana-
lyzes how functional partitioning can ensure high performance
as well as extend battery life.

A. Processor Architectures

Detailed knowledge about the multi-core processor architec-
ture is essential in order to perform code-partitioning targeted
towards that processor. This includes information about which
cores on the processor can be used to execute a specific task.
In order to perform battery aware code-partitioning further
information is required about the worst case execution time
and maximum power consumption that is associated when a
given task is executed on a particular processor core.

Interprocessor communication among the multiple proces-
sor cores forms another important aspect that needs to be
considered during code-partitioning and scheduling. Dedicated
bus systems and shared memory paradigms are commonly
used for implementing interprocessor communication. This
may be further supplemented by a scheme where the sending
processor notifies the receiving processor, about the message,
by raising an interrupt. Mailboxes act as another important
layer of abstraction over the actual communication infras-
tructure. Different processors use various combinations of
these schemes, APIs(Application Programming Interfaces) are
usually provided to simplify the task of programming. In the
following paragraph the architecture of one such commercially
available multi-core embedded processor, the TT OMAP 1510
has been briefly discussed. There are two primary reasons
for the mentioned discussion. First, it provides a practical
perspective as to how the mentioned code-partitioning and

5 TMS320C55x DSP
DSP 22 (instruction cache
MMU | SARAM, DARAM, DMA,
H/W accelarators)
16
® | MPU
interface
32 -
= 32 § a2
E
FI;?\EH 18 M MPU bus
SRAM J I
memories s 32
% M —E;H
lemory
SDRAM 16 M| interface 32 = a\:im
memories ’l__ carrrwfli'fgﬁnr 32 controller
F] (o)
I
M
I
F
32 = [32
132 — —
- MPU Private Peripheral bus
SRAM MPU core
15M (TI925T)
bits (instruction
cache, data
cache. MMU)
Fig. 9. Relevant portions of the OMAP architecture (courtesy Texas

Instruments)

scheduling scheme may be used in real-life systems. Second,
the experiments given in this paper include a practical design
scenario where, the code-partitioning and scheduling scheme
has been used for a TTS(text-to-speech) engine to be imple-
mented on the TI OMAP 1510 platform.

The TI OMAP 1510 architecture is identical to that of the
TI OMAP 5910. Relevant portions of the OMAP architecture
has been shown in figure 9. The TI OMAP 1510/5910 is a
dual core processor with an ARM9 [6] and a TMS320C55x
DSP [15] core respectively. The OMAP provides two facilities
interprocessor communication. The first being shared memory
while the second is a set of dedicated mailbox registers.
When a value is written to one of the mailbox registers by a
processor, an interrupt is generated on the other processor. The
processor also provides three separate memory interfaces, as
shown in figure 9 to reduce memory access conflicts between
the processors. The advantages of such a memory controller
with multiple interfaces will become apparent when the design
decisions with respect to the mentioned practical scenario is
discussed in the section on experimental results.

B. Functional Partitioning

The partitioning strategy used in this work is similar to
previous functional partitioning approaches [10], [34]. An
overview of the complete design flow including functional
partitioning and the scheduling is shown in figure 10. The
partitioning scheme uses strong heuristics to drastically reduce
the search space. For a more comprehensive search through
the solution space a GA(genetic algorithm) based scheme may
be employed, which has been earmarked as a future work.

The input to the functional partitioning algorithm is in the
form of a task graph. Apart from the task interdependencies,

Application Specification

ry P Task graph ofthe system

System Evaluation
Framework v

Functional Partitioning

.

Architecture
Recovery based _ k'—— ofthe Target
Battery-aware scheduling Processor

.

Cost Function Evaluation

) 4

Implementation on
Multi-core Processor

Fig. 10. The system design flow

the following information is assumed to be known a priori for
each task:

« the set of processor cores which can execute a particular
task

e worst case execution time of a task when executed on a
certain processor

o worst case power consumption for a task, processor pair

Let ptp = {lpy s Lpss - Ip,, } De the set of m processors or
cores and T = {T1,T5,...,T,} be the set of tasks specified
by the task graph. Nodes in the task graph are considered
iteratively by the partitioning algorithm, in a breadth first
manner, starting with the source node. A cost function is
used for determining the processor to which task 7; must be
assigned. When task 7T; is being considered for assignment, the
cost function is computed for each processor y1; € u,, which
can possibly execute T;. The cost function may be written in
a “max-form” as :

Pmaa: - P
Pma.t
-|—'U}4 : (]- - a) : Bpred,i (2)

+ws - (1 — putit)

Where,

tmar = Maximum, worst case execution time taken by
any processor u; € i, for executing T;

P, = maximum, peak power taken by any processor
H; € pp for executing T;

t = worst case execution time when 7T; is executed on u;

P = peak power consumed by p,; while executing T;

a = coefficient of recovery [0, 1]

wy, = weight factor corresponding to the k' term

1 if both task 7; and one of its predecessor
is scheduled on p;
0 otherwise

Bpred,i =

Alternatively, the cost function may be expressed in the “min-
form” as follows :

+’LU3 : (Nutil) +w4 : (Oé - 1) 'Bpred,i
3)

The processor yielding the maximum (minimum) value of
the cost function expressed in max-form(min-form) for task
T; is selected for executing that task. It may be noted that
functional partitioning is followed by battery-aware schedul-
ing as shown in the flow diagram in figure 10.Finally, the
obtained design is evaluated using a cycle accurate battery
life estimation framework, mentioned in a previous section.
If the system fails to come up with a design that meet the
the real-time constraints or achieve the desired battery life,
the design flow may be repeated after suitably changing the
various weight factors. Thereby, a trade-off may be reached
between the execution speed and the system battery lifetime.

Fy=w;- +wsy-

Pmcwc

tmax

VI. EXPERIMENTS AND RESULTS

Two different classes of experiment were performed for the
code-partitioning and scheduling scheme. The first involves
randomly generated datasets using a standard benchmarking
tool, while the second is based on a practical design scenario.
The results corresponding to each of the above experiments is
given in the following sub-sections.

A. Randomly Generated Task-graphs

A substantial number of experiments have been carried out
on random tasks graphs generated using a standard randomized
task graph generator - TGFF [8]. The results obtained from
the code-partitioning and scheduling systems were evaluated
using a modified Kinetic Battery Model [31] for a battery
having a maximum capacity of 2000mAh.

The battery aware scheduling scheme alone yielded a battery
life extension in the range of 19 to 34% over a standard list
scheduling approach, for task graphs with 5 to 70 nodes.
Simulations show that that the battery life extension was
greater by up to 21% for systems with a large number of tasks
and processor cores. This may be attributed to the increased
level of parallelism and flexibility in scheduling options in
the case of a larger number of cores. Table I shows the
achieved battery life extensions for a representative set of the
observations using battery aware scheduling alone. However, it
is interesting to note that when the same input task graph was
first subjected to the battery aware code-partitioning scheme
followed by the scheduling algorithm a further improvement
of up to 31% was observed in the battery life. This is over
and above the gains achieved by battery-aware scheduling [17]
alone. A comparison of the two has been shown in figure 12
for the same data-set.

A Pentium 4 desktop PC with 512 MB of primary memory
was used for the purpose of executing the scheduling and code
partitioning scheme. While the code-partitioning scheme is
of linear order, the execution time taken by the scheduling
algorithm is also comparatively much less than that for other
approaches, especially an exhaustive search which has an
exponential time order, as seen in figure 13.

14
0.8 4

=06

5 4 3

B 04

: ! : | 2

o024

2 5 4 6 =
0 T
1 2 3 4 5 1 7] a 10
Time —»
Fig. 11. Schedule without considering specified aspects of recovery effect
400.0

g 350.0 1 1

2 300.0 A

E 250.0 4 [List Scheduling

g B Non-recovery

£ 200.0 1

§ O Recovery based

5 150.0 1 O with code-partitioning

§ 1000

8 500+

0.0 - L
12 3 4 5 6 7 8 9 10
Test Cases
Fig. 12. Battery lifetimes corresponding to different scheduling schemes

It has been further observed that the proposed scheduler
also reduces the variance of the power discharge profile as a
result of glitch reduction, which has been a major objective
in previous battery aware schedulers [22]. The reduction
in power glitch may be visualized as the decrease in the
geometric perimeter of the maximum power envelope. This
length may be measured in any arbitrary units and is used
only for comparison between two power aware Gantt charts
with the same units. In order to illustrate this figure 11 shows
the output of a non-recovery based scheduler corresponding
to the task graph in example 3. The recovery based schedule
shown in figure 8(b) achieves a battery liftime extension of
about 17.49% more than the schedule shown in figure 11,
although both schedules have the same peak power for equal
amounts of time.

B. Battery Aware TTS Design

As compute intensive applications like those involving
speech processing, are being ported to mobile handheld de-

50000 /J
(1]
@ 40000
Es
‘= & 30000 1
_E § —e— Heuristic
§ 2 20000 Approach
v = .
* E —=— Exhaustive
w — 10000 ._.__*—O'W_. Search
0 T T T T T T T T T
1.2 3 4 5 6 7 8 910
Test Cases
Fig. 13. Execution time for scheduling approaches

) . Esetutiog Taas Battery Lifetime (minutes) Increase in Battery Life (%) .
#Test #Tasks | #Cores (milliseconds) N{n Non- R e Over Non-recovery Over Non-optimized
optimized recovery i based scheme scheduling
1 5 2 1376 2140 2270 250.8 1048 1713
2 7 3 1591 2264 2334 2622 1234 16.81
3 11 4 2212 2313 2376 271.9 1442 17.71
4 23 3 3178 2172 2296 2792 2157 2865
5 23 7 4120 214.7 2286 2834 2396 3179
] 27 9 3963 2189 2387 2919 2228 3328
7 35 9 5192 2015 213.0 270.2 26.83 3444
8 37 4 3439 216.61 2219 262.78 18.42 2131
) 49 11 6387 187.2 1991 2575 29.41 3Tn
10 34 10 6266 207.57 2193 26476 20.73 2755
TABLE I
COMPARISON OF SCHEDULING SCHEMES
vices, the performance requirements on the such systems -

continue to rise. The challenge here is to extend the battery life
of such handheld devices without affecting its performance.
The experiment discussed in this section is the result of a
such a requirement.

It was observed that when Shruti [26] - a concatenative
TTS(Text-to-Speech) system was ported from a desktop plat-
form, running at a few GHz, to an embedded ARM processor
running, at only a few hundred MHz, the response time of the
resulting system was unacceptable. In order to investigate the
cause for such enormous delay and explore ways of improving
the system response, the application was profiled using the
Valgrind toolset [35]. Profiling revealed that the application
consisted of two major types of tasks - namely NLP and DSP
tasks as shown by the call graph in figure 14. The call graph
obtained through Valgrind also indicates that the DSP tasks
take up more than thrice the computation power of the CPU
than all other tasks taken together. The TI OMAP dual-core
processor was selected for this reason, since it has both a
general purpose ARM processor as well as a TMS320C55x
DSP processor core. However, a supplementary DSP processor
would put additional overhead on the system battery. Hence, an
efficient code-partitioning and scheduling scheme is required
to ensure that both hard-realtime performance constraints are
met and battery-lifetime is not compromised.

In order to implement the battery aware code-partitioning
scheme the worst case execution times of each task, when
executed on a particular processor core, was found through nu-
merous simulations using the TI Code-Composer Studio [15].
The execution cost for the DSP tasks were significantly
less on the TMS320C55x DSP processor than on the ARM.
Hence, battery aware functional code-partitioning indicated
that all DSP tasks, especially filtering (which takes about
60% of the computational time on ARM), be executed
on the TMS320C55x DSP processor, while the NLP tasks
be executed on the ARM. However, the task graph for the
application showed that the DSP tasks were data dependent on
the NLP tasks, thus ruling out the scope for parallel execution.

Natural Language
Processing Unit

O

Phonological Prosodic
and intonational rule
haze

G

Phoneme string

Prosodic and
Intonational
Ruleg

Shared Memory

- § - TMS320C55x
Find Word unit
-J|> corresponding)
to a Phoneme Indian Language
Phonetic
¥ synthesizer
Apply jitter and r

algorithms to
voice unit

Apply intonational
and prosodic rules

Fig. 15. Functional block diagram of the TTS showing code-partitioning

Interestingly, even in such a case parallel execution of NLP and
DSP task instances from overlapping hyper-periods is possible,
thus leading to a pipelined execution mechanism. Figure 15
shows the functional block diagram of the system arrived at,
after code-partitioning.

Data is transferred between the processors using a combina-
tion of shared memory and mailbox facilities provided by the
OMAP architecture, as mentioned previously. Writing to one
of the mailboxes generates an interrupt to the other processor.
however, this mechanism is inefficient for transferring large
amount of data. To overcome this, the data is first written to
a location in the shared memory. The address of the location
is then passed to other processor using the mailbox register.
This also helps in establishing a synchronization mechanism
between the processors. Furthermore memory access conflicts

5.54%

_libe_start_main
99.53%

99 33%

main
00.53%,

8041% / \AIS.Si'!'u

80.41%

bengaliengine::Generate

bengalianalyser::Analyse
18.85%

10.16% /

\ 60 44%

i T

bengaliengine::Concarenate_Consonant_Vowel

bengaliengine::filter

itphono verb_morph_analysis

10.16%

7.37% 10.23%

60.44%

/ 6.58%

bengaliengine: :Findlength
12.12%

Fig. 14. Call graph for the Shruti text to speech engine

between the two processors have been greatly reduced by
exploiting the multiple memory interfaces provided by the
OMAP architecture. Resources, like exception lists, lexicons,
which are frequently accessed by the NLP tasks running on
the ARMO core are are stored in the internal SRAM shown in
figure 9. On the other hand the relatively large (3.5MB) speech
dictionary, which is accessed by the DSP processor, is stored
in the external memory and is accessed through the external
memory interface labeled as EMIFF in figure 9. The memory
interface traffic controller allows both memory accesses to take
place simultaneously without any conflicts, thus resulting in a
greater speedup.

In order to realize the pipelined execution of the TTS, the
text input is split into word clusters before processing. A task
graph is formed by the tasks corresponding to a word cluster.
The deadline or hyper-period of the for the entire task graph
should be such that no discontinuity is observed in the speech
output, i.e. the system should not produce a jittery speech
output. The pipelined execution scheme also helps in reducing
the response time of the system. This means that due to its
small size the first word cluster will produce an output much
faster compared to the response time of the system, if the
entire text was processed as a single unit.

Determining the size of the word cluster is another im-
portant aspect of the pipelined execution. Abrupt changes in
the power discharge profile leads to a lower battery efficiency
as stated previously. Increasing the word cluster length helps
in reducing such abrupt changes or glitches as shown in
figure 16. The figure shows the power-aware Gantt charts for
two different cluster lengths. It may be observed that a larger
cluster length eliminates the glitches shown by thickened
lines in figure 16(a). However, the cluster length may not
be increased arbitrarily. Since each cluster is treated as an
unit, tasks will require more memory space to process a
larger cluster. Hence, a trade-off must be reached between the
memory requirement of the system and the possible battery
savings.

It has been assumed that the power consumption of other
components of the system, like memory, buses, etc., is either

l 935%

phonological processing
9.35%

511%l

init_wverb
6.11%

Power &

150 m™W

Dz D4l Tmsazocssx

30mW—

M1 | M2 3 T4 5

Time

@

Power &

150 m™W —

D1+D2
TMA320C55x

30mW—

N1+M2 N3+ 14

(h)

Fig. 16. Power aware Gantt charts showing schedule for (a) five word (b) ten
word clusters

constant or can be attributed to the task been executed. Thus,
the Gantt may either be shifted long the Y-axis or may be
scaled suitably to take into account the power consumptions
of other system components. However, in this case only
the power consumption of the processor cores have been
considered. It may again be emphasized that though the two
schedules in figure 16 have the same peak power, their
corresponding battery lifetimes may be significantly different.
In this case , it has been determined empirically that the battery

N - RN}
o O 0 o

@ Non-partitioned
B Partitioned

Execution Time (seconds)
o3 88

s

s

)

&

s

2

%

>

%

&

Fig. 17. Comparison of non-partitioned and partitioned TTS execution times

Memory Usage (in MBytes)

8
7
6
5
4
3
2
1
0

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 @0 95 100
#Words

Fig. 18. Graph showing the rise in memory usage with increase in word
cluster lengths

life of the second schedule can exceed that of the first by up to
6%. The large gaps in DSP activity, obtained after scheduling
can be further exploited using DVS(Dynamic Voltage Scaling)
and DPM(Dynamic Power Management) features provided by
the processor to further improve battery life [15].

The tools used for experimentation primarily include the
Code Composer Studio and Innovator Kit from Texas In-
struments. A cycle accurate framework based on a modified
Kinetic Battery Model [31] was developed for estimating the
battery lifetime under various load conditions.The battery used
for the purpose of simulation is assumed to have a nominal
capacity 2000mAh at 3.7V.

Simulations showed an average reduction of 39.36% in the
execution time over a non-partitioned implementation. The
average execution times for different word cluster lengths have
been shown in figure 17 for non-partitioned implementation
on ARM and the code-partitioned implementation on the
OMAP. The technique achieved a maximum speed-up of up
to 1.86 and a battery life extension up to 11%. It may be
observed from figures 17 and 18 that the system memory
requirement increases almost linearly with an increase in the
word cluster length. On the other hand the improvement in
battery lifetime tends to saturate beyond a certain word cluster
length. Obtaining the full theoretic capacity of the battery is
nearly impossible. Hence, a balance must be struck between
the battery life and the system memory usage while selecting
the word cluster length. Phrases may be considered instead of
words for an intonated speech synthesis system.

VII. CONCLUSIONS AND FUTURE WORK

A battery aware code-partitioning and scheduling scheme
has been proposed in this paper. The work indicates the
importance of code-partitioning and scheduling in order to
improve battery lifetimes as well achieve better system per-
formance in embedded multiprocessor systems. It may be

emphasized that, though scheduling alone results in significant
improvement in battery life, code-partitioning provides scope
for even greater improvement. Results prove the efficacy of the
proposed scheme. The techniques discussed in the paper are
highly relevant to design of battery powered mobile embed-
ded devices and finds application in the increasing number
of multi-core embedded processors. The mentioned code-
partitioning and scheduling schemes use a heuristic search
technique for finding a battery aware solution in the design
space. A genetic algorithm with similar cost functions may
be used to perform a more thorough search of the design
space. Finally, it may be concluded that using DVS and DPM
techniques in combination with the above mentioned scheme
could yield further improvements to battery life.

REFERENCES

[1] P. M. Alvarez, E. Levner, and D. Mosse, “Adaptive scheduling server
for power-aware real-time tasks,” Trans. on Embedded Computing Sys.,
vol. 3, no. 2, pp. 284-306, 2004.

[2] L. Benini, G. Castelli, A. Macii, E. Macii, M. Poncino, and R. Scarsi, “A
discrete-time battery model for high-level power estimation,” in DATE
’00: Proceedings of the conference on Design, automation and test in
Europe. New York, NY, USA: ACM Press, 2000, pp. 35-41.

[3] 1. Buchmann, “Batteries in a portable world,” http://www.cadex.com.
[Online]. Available: http://www.cadex.com

[4] T.D. Burd and R. W. Brodersen, “Energy efficient cmos microprocessor
design,” in HICSS ’95: Proceedings of the 28th Hawaii International
Conference on System Sciences (HICSS’95). Washington, DC, USA:
IEEE Computer Society, 1995, p. 288.

[5] C. E Chiasserini and R. R. Rao, “Pulsed battery discharge in com-
munication devices,” in MobiCom ’99: Proceedings of the 5th annual
ACM/IEEE international conference on Mobile computing and network-
ing. New York, NY, USA: ACM Press, 1999, pp. 88-95.

[6] A. Corp., http://www.arm.com. [Online]. Available: http://www.arm.com

[71 R. P. Dick and N. K. Jha, “Mocsyn: multiobjective core-based single-
chip system synthesis,” in DATE ’99: Proceedings of the conference on
Design, automation and test in Europe. New York, NY, USA: ACM
Press, 1999, p. 55.

[8] R. Dick, D. Rhodes, and W. Wolfe, “Tgff: Task graphs for free,” in
Workshop Hardware / Software Codesign, 1998, pp. 97-101.

[91 M. Doyle, T. Fuller, and J. Newman, “Modeling of galvanostatic

charge and discharge of lithium polymer insertion cell,” Journal of

Electrochemical Society, vol. 140, pp. 1526-1533, June 1993.

Y. Fei and N. K. Jha, “Functional partitioning for low power distributed

systems of systems-on-a-chip,” in ASP-DAC ’02: Proceedings of the

2002 conference on Asia South Pacific design automation/VLSI Design.

Washington, DC, USA: IEEE Computer Society, 2002, p. 274.

T. Fuller, M. Doyle, and J. Newman, “Relaxation phenomena in lithium-

ion insertion cells,” Journal of Electrochemical Society, vol. 141, pp.

982-990, April 1994.

M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide

to the Theory of NP-Completeness. New York, NY, USA: W. H.

Freeman & Co., 1990.

S. Gold, “A pspice macromodel for lithium-ion batteries,” in Battery

Conference on Applications and Advances, 1997, pp. 35-41.

W. Gu and C. Wang, “Thermal-electrochemical modeling of battery

systems,” Journal of Electrochemical Society, vol. 147, no. 8, pp. 2910—

2922, 2000.

T. Instuments, http://www.ti.com. [Online]. Available: http://www.ti.com

H. Kiehne, Battery Technology Handbook. New York, NY, USA: Marcel

Dekker Inc., 2003.

A. Lahiri, S. Agarwal, B. B. Bhattacharya, and A. Basu, “Recovery-

based real-time static scheduling for battery life optimization,” in VLSID

'01: Proceedings of the The 19th International Conference on VLSI

Design (VLSID ’06). Washington, DC, USA: IEEE Computer Society,

2006.

K. Lahiri, “On-chip communication: System-level architectures and

design methodologies,” Ph.D. dissertation, Department of Electrical and

Computer Engineering, University of California, San Diego, 2003.

[10]

[11]

[12]

[13]
[14]
[15]
[16]

(17]

[18]

(19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]
[36]

K. Lahiri, S. Dey, D. Panigrahi, and A. Raghunathan, “Battery-driven
system design: A new frontier in low power design,” in ASP-DAC
'02: Proceedings of the 2002 conference on Asia South Pacific design
automation/VLSI Design. Washington, DC, USA: IEEE Computer
Society, 2002, p. 261.

D. Linden, Handbook of Batteries and Fuel Cells. New York, NY,
USA: McGraw-Hill, 1984.

J. Liu, P. H. Chou, N. Bagherzadeh, and F. Kurdahi, “Power-aware
scheduling under timing constraints for mission-critical embedded sys-
tems,” in DAC ’01: Proceedings of the 38th conference on Design
automation. New York, NY, USA: ACM Press, 2001, pp. 840-845.
J. Luo and N. K. Jha, “Battery-aware static scheduling for distributed
real-time embedded systems,” in Proc. of DAC, 2001, pp. 444-449.
——, “Power-conscious joint scheduling of periodic task graphs and
aperiodic tasks in distributed real-time embedded systems,” in /CCAD
’00: Proceedings of the 2000 IEEE/ACM international conference on
Computer-aided design. Piscataway, NJ, USA: IEEE Press, 2000, pp.
357-364.

J. E Manwell, J. G. McGowan, U. Abdulwahid, and K. Wu, “Im-
provements to the hybrid2 battery model,” in American Wind Energy
Association Windpower 2005 Conference, 2005.

S. Microelectronics, http://www.st.com. [Online]. Available:
http://www.st.com

A. Mukhopadhyay, S. Chakraborty, M. Choudhury, A. Lahiri, S. Dey,
and A. Basu, “Shruti - an embedded text-to-speech system for indian
language,” IEE Proceedings on Software Engineering, 2005, to appear.
D. Panigrahi, S. Dey, R. Rao, K. Lahiri, C. Chiasserini, and A. Raghu-
nathan, “Battery life estimation of mobile embedded systems,” in VLSID
’01: Proceedings of the The 14th International Conference on VLSI
Design (VLSID ’01). Washington, DC, USA: IEEE Computer Society,
2001, p. 57.

M. Pedram and Q. Wu, “Design considerations for battery-powered
electronics,” in DAC ’99: Proceedings of the 36th ACM/IEEE conference
on Design automation. New York, NY, USA: ACM Press, 1999, pp.
861-866.

Philips, http://www.philips.com. [Online]. Available:
http://www.philips.com

D. Rakhmatov and S. Vrudhula, “Energy management for battery-
powered embedded systems,” Trans. on Embedded Computing Sys.,
vol. 2, no. 3, pp. 277-324, 2003.

V. Rao, G. Singhal, A. Kumar, and N. Navet, “Battery model for
embedded systems,” in VLSID '05: Proceedings of the 18th Interna-
tional Conference on VLSI Design held jointly with 4th International
Conference on Embedded Systems Design (VLSID’05). Washington,
DC, USA: IEEE Computer Society, 2005, pp. 105-110.

Y. Shin and K. Choi, “Power conscious fixed priority scheduling for hard
real-time systems,” in DAC ’99: Proceedings of the 36th ACM/IEEE
conference on Design automation. New York, NY, USA: ACM Press,
1999, pp. 134-139.

V. Tiwari, S. Malik, and A. Wolfe, “Power analysis of embedded
software: a first step towards software power minimization,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 2,
no. 4, pp. 437445, 1994.

Vahid, Le, and Hsu, “A comparison of functional and structural parti-
tioning,” in ISSS ’96: Proceedings of the 9th international symposium
on System synthesis. Washington, DC, USA: IEEE Computer Society,
1996, p. 121.

Valgrind, http://valgrind.org/. [Online]. Available: http://valgrind.org/
D. Zhu, D. Mosse, and R. Melhem, ‘“Power-aware scheduling for and/or
graphs in real-time systems,” IEEE Trans. Parallel Distrib. Syst., vol. 15,
no. 9, pp. 849-864, 2004.

